NUMA41, Numerical Analysis: Basic Course, 7.5 credits

Numerisk analys: Grundkurs, 7.5 högskolepoäng

First Cycle / Grundnivå

Details of approval

The syllabus was approved by Study programmes board, Faculty of Science on 2016-02-25 and was last revised on 2016-02-25. The revised syllabus applies from 2016-02-25, spring semester 2016.

General Information

The course is an elective course for first-cycle studies for a degree of Bachelor of Science (180 credits), or Master of Science (120 credits), in Mathematics.

Language of instruction: English

Main field of studies

Mathematics

Depth of study relative to the degree requirements

G2F, First cycle, has at least 60 credits in first-cycle course/s as entry requirements

Learning outcomes

The aim of the course is that the student on completion of the course should have acquired the following knowledge and skills:

Knowledge and understanding

On completion of the course, the student must be able to:

- account for the basic theory for construction of computable approximations of the most common types of mathematical models within the natural sciences,
- explain common terms and concepts of numerical analysis.
Competence and skills

In order to pass the course, the student must be able to:

- account for the solutions of problems and numerical results, in writing,
- with adequate terminology and in a logically well-structured manner, account for the construction of basic numerical methods and algorithms,
- with adequate terminology and in a logically well-structured manner, account for the numerical solution of a problem with a mathematical formulation.

Course content

- Linear systems, matrix factorizations and condition numbers,
- The method of least squares, orthogonal systems, L2 approximation,
- (Newton) iteration and order of convergence. Interpolation and quadrature,
- Discretization of initial value problems for ordinary differential equations, stiff and non-stiff problems,
- The basic idea of the Finite Element Method. The relation to L2 approximation and error estimates.

Course design

The teaching consists of lectures and compulsory hand-ins.

Assessment

Written examination and a written report on a programming project.

For students who fail on the exam an additional exam is offered shortly afterwards.

Subcourses that are part of this course can be found in an appendix at the end of this document.

Grades

Marking scale: Fail, Pass, Pass with distinction.

The grade is based on the grades on the examination and on the written report on the programming project.

Entry requirements

For admission to the course knowledge corresponding to at least 60 credits in Mathematics and Numerical Analysis, including the courses MATB22 Linear Algebra 2, 7.5 credits; MATB21 Analysis in Several Variables 1, 7.5 credits; and NUMA01 Computational Programming with Python, 7.5 credits, is required.
Subcourses in NUMA41, Numerical Analysis: Basic Course

Applies from V16

1601 Project report, 4,0 hp
 Grading scale: Fail, Pass, Pass with distinction
1602 Written examination, 3,5 hp
 Grading scale: Fail, Pass, Pass with distinction