Details of approval

The syllabus was approved by Study programmes board, Faculty of Science on 2007-06-14 and was last revised on 2012-11-21. The revised syllabus applies from 2012-11-21, spring semester 2013.

General Information

The course is an elective course for first-cycle studies for a Bachelor of Science in physical geography and ecosystem analysis. The course is also given as a freestanding course.

Language of instruction: Swedish and English

The course is given in English when necessary.

Main field of studies

Physical Geography

Depth of study relative to the degree requirements

G2F, First cycle, has at least 60 credits in first-cycle course/s as entry requirements

Learning outcomes

Knowledge and understanding The student is expected to be able to: describe at a general level the energy systems of the Earth as driving force to the dynamics of the Earth and the landscape formation describe the Earth’s cyclic transport of matter (water, rock, soil) and the landscape geodynamics over the time account for the Earth’s endogenic respective exogenic geomorphological processes’importance for land forms’and landscape’s dynamics in detail describe mass movement, weathering and erosion processes in different climates explain the relationships between mass movements, weathering and erosion processes and land forms in different climates account for history of science and basic theories of the cycles of the landscape describe conceptual numerical models of simulation of different geomorphological processes summarise human influence on the landscape in a global or local
Course content

The course aims to provide advanced and applied knowledge of Earth's landscapes and the processes (particularly abiotic), through which landscapes are developed and changed in different climates and spatial contexts. The course focuses on landforms, origin and development of the Earth's surface, and treats landscapes, landforms, land-forming processes and their connection to climate and anthropogenic factors. It explores geomorphological processes in landscape dynamics, natural resource planning, soil conservation, land degradation, and landscape changes at local, regional, and global scales. Understanding the human influence on landscape dynamics and changes is central. The course examines both northern conditions and tropical and subtropical environments, placing strong emphasis on analyzing present-day landscapes as results of long-term changes under different climates.

Course design

The teaching comprises lectures, laboratory sessions, field exercises, seminars, group work, and project work. Participation in laboratory sessions, field exercises, seminars, group work, and project work is mandatory, along with integrating other teaching methods.

Assessment

Examination occurs through written assignments and project presentations during the course, and via written examination. Students who do not pass the regular examination are offered additional close connection examination. Subcourses that are part of this course are listed in an appendix at the course's end.

Grades

Marking scale: Fail, Pass, Pass with distinction. To pass the entire course, students must have approval from the examination and must meet the criteria for written assignments and project presentations, and participation in compulsory parts.
Entry requirements

General entry requirements and 120 credits scientific studies including NGEA01 (Introduction to the environment of the soil), NGEA07 (Physical geography theory and methodology), NGEA04 (Ecosystem analysis), NGEA06 (The Climate system), NGEA11 (Geographic information systems) and NGEA03 (Remote sensing for landscape studies) or the equivalent.

Further information

The course may not be included in a higher education qualification together with NGE607 the processes and landskapsdynamik of the Surface 10 p.
Subcourses in NGEA09, Physical Geography: Land Surface Processes and Landscape Dynamics

Applies from V08

0701 Land Surface Processes and Landscape Dynamics, 15,0 hp
Grading scale: Fail, Pass, Pass with distinction